龟速的malloc和神速的FastMM
4675 点击·0 回帖
![]() | ![]() | |
![]() | 由于在delphi项目中,要频繁创建和释放大量小对象,因此担心有效率问题,于是打于GetMem.inc看看,发现FastMM对于小块内存作了很多工作,它预置了一组不同大小的内存池,当要创建一块内存时,FastMM找到大小最相近的内存池分配之,内存释放后回收到池中。这样的做法虽有小量内存浪费,但效率却是大大提高。 我决定做一个测试,看看效率研究如何: const cSize: Integer = 100; cNum: Integer = 10000; var N, I: Integer; P: array [0..9999] of Pointer; Fre: Int64; Count1, Count2: Int64; Time: Double; begin QueryPerformanceFrequency(Fre); QueryPerformanceCounter(Count1); for I := 0 to 1000 - 1 do begin for N := 0 to cNum - 1 do GetMem(P[N], cSize); for N := 0 to cNum - 1 do FreeMem(P[N]); end; QueryPerformanceCounter(Count2); Time := (Count2 - Count1) / Fre; Writeln(Format('delphi2007 Release: %f', [Time])); end. 上面例子中,循环1000次,每次循环分别创建和释放10000个100字节的内存块,运行结果如下: delphi2007 Release: 0.14 结果非常好,这下我可以尽情使用小对象来替换记录的工作了。 我想起C++的Malloc,不知其效率如何,于是我又将delphi的测试代码转换成C++,代码如下: LARGE_INTEGER fre; LARGE_INTEGER count1, count2; double time; QueryPerformanceFrequency(;fre); const int cSize = 100; const int cNum = 10000; void* p[cNum]; QueryPerformanceCounter(;count1); for (int i = 0; i < 1000; ++i) { for (int n = 0; n < cNum; ++n) p[n] = malloc(cSize); for (int n = 0; n < cNum; ++n) free(p[n]); } QueryPerformanceCounter(;count2); time = (count2.QuadPart - count1.QuadPart) / (double)fre.QuadPart; printf("VC2008 Release: %f\n", time); 运行结果使我震惊,这真是龟速的malloc: VC2008 Release: 3.854 看来malloc并没有对小内存作任何优化,所以在C++中要大量使用动态对象,是必须要小心的,否则很容易引起性能问题。找了一些替换的内存管理器,始终没有办法达到FastMM的水平,最快的也只是其一半的速度。 最后我用自己实现的一个受限的内存管理器测试,该管理器只能创建固定大小的内存块,也是用池的方式缓存内存块,代码如下: LARGE_INTEGER fre; LARGE_INTEGER count1, count2; double time; QueryPerformanceFrequency(;fre); const int cSize = 100; const int cNum = 10000; void* p[cNum]; FixedAlloc myAlloc(cSize); QueryPerformanceCounter(;count1); for (int i = 0; i < 1000; ++i) { for (int n = 0; n < cNum; ++n) { //p[n] = malloc(cSize); p[n] = myAlloc.Alloc(); } for (int n = 0; n < cNum; ++n) { //free(p[n]); myAlloc.Free(p[n]); } } QueryPerformanceCounter(;count2); time = (count2.QuadPart - count1.QuadPart) / (double)fre.QuadPart; printf("VC2008 Release: %f\n", time); 这次的结果很让我满意: VC2008 Release: 0.0806 速度比FastMM快了近一倍,但这并不表示它比FastMM好,因为FastMM更加通用,且处理了很多其他的逻辑,如果FixedAlloc做得更完善一些,或许会和FastMM接近的。因此可见,对效率很敏感的程序,使用特有的内存管理器是必须的,否则让龟速的malloc来处理,一切都是龟速。 进一步想,如果打开多线程判断,FastMM的效率不知如何,于是又有下面的测试代码: IsMultiThread := True; QueryPerformanceCounter(Count1); for I := 0 to 1000 - 1 do begin for N := 0 to cNum - 1 do GetMem(P[N], cSize); for N := 0 to cNum - 1 do FreeMem(P[N]); end; QueryPerformanceCounter(Count2); Time := (Count2 - Count1) / Fre; Writeln(Format('delphi2007 Release:%f', [Time])); 仅仅是把IsMultiThread打开,效果非常明显: delphi2007 Release:0.41 足足比单线程模式慢了3倍,但是如果我自己来处理多线程的情况呢,结果又是如何呢: IsMultiThread := False; InitializeCriticalSection(CS); QueryPerformanceCounter(Count1); for I := 0 to 1000 - 1 do begin for N := 0 to cNum - 1 do begin EnterCriticalSection(CS); GetMem(P[N], cSize); LeaveCriticalSection(CS); end; for N := 0 to cNum - 1 do begin EnterCriticalSection(CS); FreeMem(P[N]); LeaveCriticalSection(CS); end; end; QueryPerformanceCounter(Count2); Time := (Count2 - Count1) / Fre; Writeln(Format('delphi2007 Release:%f', [Time])); DeleteCriticalSection(CS); 结果很糟糕: delphi2007 Release:0.71 FastMM并不像delphi7那样,用临界区来实现多线程安全,因此效率要比那个方案更高一些,FastMM确实不失为一个顶级的内存管理器。 | |
![]() | ![]() |